lustrous dark cherry-red crystals, mp 280° C (decomp., from benzene), readily soluble in ethanol and acetone, moderately in benzene, and sparingly in water. Found, %: C 66.58; H 5.52; N 13.05. Calculated for $C_{12}H_{12}N_2O_2$, %: C66.65; H5.59; N12.95. IR spectrum: ν_{NH} 3365 cm⁻¹, $\nu_{\rm CO}$ 1673 cm⁻¹.

sym-Octahydropyrido[2,3-g]quinoline (VI). This was obtained by the Kizhner-Wolff [Wolff-Kishner] reduction of V. The yield of VI was 80.5%, mp 161-162° C (from ethyl acetate). According to the literature [3], mp 161-162° C. Found, %: N 15.05. Calculated for $C_{12}H_{16}N_2$, %: N 14.9. IR spectrum: ν_{NH} 3362 cm⁻¹.

REFERENCES

- 1. J. T. Braunholtz and F. Mann, J. Chem. Soc., 1817, 1953.
- 2. A. F. Bekhli, DAN, 101, 679, 1955.
- 3. W. O. Sykes, J. Chem. Soc., 4583, 1960.

17 March 1969 Institute of Medicinal Parasitology and Tropical Medicine, Moscow

ARYLAMINATION OF QUATERNARY ACRIDINIUM SALTS

O. N. Chupakhin, V. A. Trofimov, and Z. V. Pushkareva Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 5, pp. 954-955, 1969 UDC 547.835.9.07

In studying the reactivity of quaternary acridinium salts, we have found that at 110-130° C in the presence of sulfur they react with arylamines. In this way, for example, high yields of 10-alkyl-9-(paminophenyl)- and 10-alkyl-9-(p-dimethylaminophenyl)acridinium halides (I and II) are formed.

The presence of a free amino group in I is shown by IR spectroscopy and by diazotization followed by azo-coupling.

The structure of the substances of type II was shown by independent synthesis, namely by the quaternization with methyl iodide of 9-(pdimethylaminophenyl)acridine, which we obtained by Ullman's

The reaction described also extends to acridine base, but in contrast to the reaction with acridinium salts, it takes place with low yields (12-13%). The reaction of acridine with aniline and dimethylaniline in the presence of sulfur yielded 9-(p-aminophenyl)- and 9-(p-dimethylaminophenyl)acridines (III and IV), respectively.

The structure of III was confirmed by its IR spectrum and by deamination via the diazonium compound to 9-phenylacridine, which gave no depression in admixture with the substance obtained by Berntsen's method [2].

The quaternization of III and IV with equimolecular amounts of methyl iodide gave their quaternary salts with yields of 65-80%.

When ethanolic solutions of these salts were passed through Al₂O₃, compounds III and IV were re-formed quantitatively.

Some characteristics of the compounds synthesized are given in the table.

REFERENCES

- 1. F. Ullman, W. Bader, and H. Labhardt, Ber., 40, 4795, 1907.
- 2. A. Berntsen, Ber., 16, 767, 1883.

10 April 1969

Kirov Ural Polytechnic Institute, Sverdlovsk

Characteristics of the Compounds Obtained

Compound	Mp,°C	Empirical formula	Found, %			Calculated, %			Yield, %
			С	н	N	С	Н	N	Ϋ́
10-Methyl-9-(p-aminophenyl)	234 (ethanol)	C ₂₀ H ₁₇ N ₂ I	58.20	4.13	6.93	58.26	4.15	6.79	90
10-Methyl-9-(p-dimethylamino- phenyl)acridinium iodide	216 (ethanol)	C ₂₂ H ₂₁ N ₂ I	59.77	4.77	6.30	60,00	4.80	6 .36	91
9-(p-Aminophenyl)acridine	269 (ethanol)	C ₁₉ H ₁₄ N ₂	84.66	5.23	10,14	84.41	5.22	10,37	12
9-(p-Dimethylaminophenyi) acridine	279 (xylene)	C ₂₁ H ₁₈ N ₂	85.06	6.13	9,25	84,88	6.08	9.39	13
10-Ethyl-9-(p-aminophenyl) acridinium iodide	220 (ethanol)	C ₂₁ H ₁₉ N ₂ I	59.51	4.61	6.69	59.16	4.49	6.57	90
10-Ethyl-9-(p-methylamino- phenyl)acridinium iodide	214 (ethanol)	C ₂₂ H ₂₁ N ₂ I	59.73	5.01	6.55	60.01	4.81	6.36	96
10-Ethyl-9-(p-dimethyl- aminophenyl)acridinium iodide	224 (ethanol)	C ₂₃ H ₂₃ N ₂ I	60.42			60.80		6.16	94
10-Benzyl-9-(p-dimethyl- aminophenyl)acridinium iodide dihydrate	melts dif- fusely	C ₂₈ H ₂₅ N ₂ I · · 2H ₂ O	60.99	5.41	5.66	60.87	5.29	5.07	91